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COMMENT 

High-temperature series expansion studies of mixed 
spin-&spin-S Ising models 

B Y Yousifi and R G Bowers 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, PO 
Box 147, Liverpool L69 3BX, UK 

Received 16 July 1984 

Abstract. Mixed spin Ising models have less translational symmetry than their ‘single spin’ 
counterparts and are well adapted for the study of a certain type of ferrimagnetism. In 
this article the high-temperature series expansion work of Schofield and Bowers-who 
studied mixed spin-$-spin-l king models-is generalised by replacing the spin-I objects 
by arbitrary spin-S ones. The new series are used to investigate the spin dependence or 
independence of critical parameters in a novel setting. There is no evidence to suggest 
that the exponents studied are spin dependent. 

1. Introduction 

The purpose of this comment is to present extensions of the work of Schofield and 
Bowers (1981) on mixed spin-i-spin-1 Ising modelst. We have generalised their 
calculations replacing the spin-1 objects by arbitrary spin-S ones. This has allowed us 
to investigate the spin dependence or independence of parameters describing critical 
behaviour in a new setting. Mixed spin Ising models have less translational symmetry 
than their ‘single spin’ counterparts and are well adapted for the study of a certain 
type of ferrimagnetism (NCel 1948). 

The reduced Hamiltonian of our model takes the form 

The underlying lattice is loose packed and the sites of the A sublattice are occupied 
by ‘spins’ ( T ~  of magnitude 4 whilst those of the alternate B sublattice are occupied by 
‘spins’ sj of magnitude S. The a, take the values *; and the s, the values - S ,  
- S - t  1, . . . , S where S has one of the usual integral or odd half-integral values. The 
first summation in ( 1 )  involves all pairs of nearest-neighbour sites in the lattice. The 
second and third summations involve all sites of A and B respectively. The quantities 
K ,  LA, L,-measured in units of kT-are, respectively, an interaction constant and 
the magnetic fields on the A and B sublattices. If K > 0, the situation is potentially 
ferromagnetic whilst, if K < 0, the situation is potentially ferrimagnetic. The symmetry 
(Schofield and Bowers 1981) between ferromagnet in a uniform field and ferrimagnet 

f Present address: Department of Mathematics, College of Science, Basrah University, Basrah, Iraq. 
$The mixtures discussed here are of a non-random two sublattice type and not of the random type which 
is of much current interest. 
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in a staggered field still applies. Uniform field ferromagnetic critical behaviour is thus 
studied. It is easy to interpret this ferrimagnetically if required. 

2. The Brout expansion 

In order to generalise the series expansions of Schofield and Bowers (1981) using 
Brout's (1959, 1960) technique, it is necessary to recalculate the graph cumulants. This 
is a laborious but straightforward procedure (Yousif 1983). The diagrams which enter 
the new calculations remain as before; no other aspects of the calculations are altered. 
(Many new diagrams do appear if the spin-f sublattice is replaced by a general spin-S' 
sublattice-diagrams articulated at a spin-; vertex have zero cumulant. Thus (1) allows 
us to reach maximum order with the given diagrams.) 

The series expansions for the (reduced) initial susceptibility ,y and the zero-field 
specific heat C may be written in the forms 

and 

c =I c , ( S ) K "  ( n  even). (3)  

Table 1. Zero-field susceptibility coefficients for the SQ, sc and BCC lattices with X = 
S(S+I) .  

SQ 
b,(S)=(1/11)(4X+3) 
b , (S)=8X/11 
b2(S) = (X/165)(68X +39) 
b3(S) = (2X/33)(IOX - 1 )  
b4(S)=(X/13860)(4460X2+1721X-177) 
b,(S) = (X/6930)(2890X2 -657X + 51) 
b6(S) = (X/831 600)( 179 168X3 + 3? 268X2- IO 87lX +726) 
b,(S)=(X/207900)(54726X3- 19414X2+2964X- 195) 

sc 
bo(S) = (1/11)(4x +3) 
b , (S )=  12X/ l l  
b2(S)=(3X/110)(36X+23) 
b , ( S )  = (2X/55)(67X -4) 
b,(S) = (X/9240)(19 708X2+ I O  749X -615) 
bs(S) =(X/4620)(23 306X2-2964X+ 141) 
b6(S)=(X/1663 200)(7266 168X3+3372858X2-438 192X+18 153) 
b7(S)=(X/207900)(2102 787X3-412 533X2+36 126X - 1521) 

____ 
BCC 

b, (S)=(1 /11) (4X+3)  
b , ( S ) =  16X/ l l  
b 2 ( S )  = (2X/165)(148X +99) 
b,(S) = (2X/ 16N516X -22) 
b4(S )  = (X/6930)(52 148X2 + 3 1 159X - 1305) 
b , ( S ) = ( X / I  155)(29018X2-2775X+92) 
b,(S) = (X/415 800)(12 482 576X3 1-6589 456X2 -645 199X + 19 971) 
b7 (S)  = (X/207 900)(20 370 104X3 - 3075 616X'+ 202 329X - 5871) 
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In table 1, coefficients bo( S ) ,  b ,  ( S ) ,  . . . , b7( S )  are given for the SQ, sc, and BCC lattices. 
In table 2, coefficients c , ( S ) ,  c4(S), . . . , c , , ( S )  are given for the same three lattices. 

Table 2. Zero-field specific heat coefficients for the SQ, sc and BCC lattices with X = 
S(S + 1) .  

SQ 

c2(S) = X/6  
c4(S)=(X/24)(3X- I )  
c6( S) 
c8(S)=(X/259 200)(3857X3-4038X2+2043X-390) 

(X/6048)( 272X2 - 216X + 5 I ) 

C , ~ ( S )  = (X/5322 240)(28 568X4-31 544X3+ 20 099X2 -7815X + 1285) 

sc 
C 2 ( S )  = x / 4  
c4(S) =(X/80)(29X-8) 
c6(S) =(X/4032)(2026X2-759X +141) 
c,(S)=(X/172 800)( 126 783X3-58 532X2+ 13 896X -2028) 

c,,(S)=(X/3548 160)(3959 274X4-2127 059X3+595 155X2- 109 120X+ 13 585) 

BCC 

C2(S) = x / 3  
c4(S)=(X/60)(73X- 1 1 )  
c6( S) = ( X /  1 5 12)( 5 I 46X2 - I443 X + 138) 
c,(S)=(X/ 129 600)( I272 475X3 -469 350X2+80 028X - 5871) 

~lo(S)=(X/2661 120)(78680700X4-34400282X3+7566392X2-97454OX+ 13 585) 

Certain checks have been applied to our results. For S = $ ,  all the results given 
here reduce to those known for the standard spin-; Ising model (Domb and Sykes 
1957, Domb 1960). For S = 1 nearly all our results agree with those of Schofield and 
Bowers (1981). Where there is disagreement, we feel that the present results are correct. 
Our calculations correct small errors in ~ , ~ ( l )  for the SQ and BCC lattices. (On the 
BCC lattice there are two free-energy diagrams (Yousif 1983) missing from the list 
given by Schofield (1980).) The coefficients b4(l) and b,(l) given by Schofield and 
Bowers are also slightly wrong for all three lattices. We have traced the origin of the 
error to a failure to include all correlation lines in a few highly symmetric graphs. 

3. Analysis of the series 

We have used the methods of series analysis employed by Schofield and Bowers (1981). 
To fix attention we have studied the cases S = $ ,  1, t ,  5 ,  10, 100. For S = i ,  which is 
the standard Ising model, our results can be compared with others which use much 
longer series (e.g. Domb 1974). For S =  1 our results can be compared with those 
obtained, using some slightly different coefficients, by Schofield and Bowers (1981). 
For the other spin values our results are the first available. We give details of the 
analysis only for S = 5 and the BCC lattice. All other cases are dealt with very briefly 
to save space. 

In table 3 we give roots and residues of Pad6 approximants to the logarithmitic 
derivative of the susceptibility x (for S = 5 and the BCC lattice). These lead us to make 
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Table 3. Estimates of K ,  and y (in parenthesis) from Pad6 approximants to D In x for 
the BCC lattice and S = 5. 

2 3 4 

2 0.104 88 (1.61 1 ) 0.093 11 (1.133) 0.096 13 (1.288) 0.09648 (1.311) 
3 0.095 14(1.231) 0.095 48 (1.246) 0.096 53 ( I .3 15) 

5 0.096 29 (1.298) 
4 0.095 49 (1.247) 0.09485 (1.224) 

the preliminary estimates 

K c  = 0.0957 * 0.0008, y = 1.270 * 0.045. (4) 

We have formed Pad6 approximants to x ’ ’ ~  and ( K c -  K ) D  In x in the usual way for 
various values of y and Kc in the ranges (4). Results for typical values are shown in 
tables 4 and 5. Overall these calculations lead us to sharpen our estimates somewhat. 
Our final Pad6 estimates are 

Kc = 0.0958 * 0.0004, y = 1.26 rt 0.02. ( 5 )  

Table 4. Estimates of K ,  for the BCC lattice and S = 5 from Pad6 approximants to x”’ 
with y = 1.26. 

‘ N  
D 1 2 3 4 5 6 

1 0.026 72 0.378 04 0.023 91 0.394 14 0.023 18 0.401 53 
2 0.094 40 0.096 22 0.095 47 0.095 87 0.095 74 
3 0.096 54 0.095 69 0.095 73 0.095 78 
4 0.094 42 0.095 73 0.096 16 
5 0.095 46 0.095 77 
6 0.095 85 

Table 5. Estimates of y for the BCC lattice and S = 5 from Pad6 approximants 
to ( K ,  - K )  D In x evaluated at K = K ,  = 0.0957. 

N 
D 1 2 3 4 5 

1 1.354 1.230 1.265 1.259 1.249 
2 1.250 1.257 1.260 1.272 
3 1.257 1.262 1.258 
4 1.260 1.258 
5 1.252 

We now turn our attention to the ratio method using the quantities sfl = (b , , /bn-2)”2  
and alternate pairs of points in the fashion of Schofield and Bowers (1981). We 
compute sequences 
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and the extrapolants 1; and g ;  obtained by replacing s, in (6) by I ,  and g, respectively. 
The sequences I ,  and Z;, which provide estimates for KC',  are given (for S = 5  and 
the BCC lattice) in table 6. These lead us to estimate 

Kc = 0.0957 * 0.0003 

Table 6. The sequences I,, and 1; for the susceptibility 
,y of the BCC lattice with S = 5. 

n 4 1 ;  

Table 7. The sequences g, and gk for the susceptibil- 
ity ,y of the BCC lattice with S = 5 using K ,  = 0.0957. 

2 10.260 10.486 
3 10.395 10.416 
4 10.373 
5 10.403 

2 0.325 0.253 
3 0.259 0.233 
4 0.289 0.245 
5 0.248 0.2 17 
6 0.275 
7 0.239 

in good agreement with the Pad6 result in (5). In table 7 we use the central value of 
Kc from (8) to obtain sequences g, and g ;  which provide estimates for y - 1. We 
have investigated such sequences for other values of Kc and are inclined to feel that 

y = 1.24 * 0.03 (9) 

represents these results fairly well. The agreement with the Pad6 result in ( 5 )  is really 
quite good. 

Our final estimates of Kc and y reflect both the Pad6 and the ratio results already 
presented. They also reflect a search for consistency between the two methods. In 

Table 8. Final estimation of K, ,  y and a for the BCC, SQ, and sc lattices with S =;, 1, 2, 
5, IO,  and 100. 

S K c  Y a 

I 
BCC I 0.628 * 0.002 1.22 * 0.03 0.10 * 0.03 

1 0.376 * 0.001 1.23 * 0.02 0.13 *0.03 

5 0.0957 * 0.0001 1.24 * 0.02 0.14 * 0.03 

100 0.00522 I 0.00003 I .24 * 0.04 0 .16i  0.06 

3 I 0.273 * 0.001 1.24* 0.01 0. 1 4 1  0.04 

I O  0.04997 *0.00012 1.24 * 0.02 0.14 * 0.04 

I sc I 0.885 i 0.01 7 I .23 * 0.12 0.06 * 0.20 
1 0.527 * 0.006 l.24* 0.12 0.08 * 0. I O  
I 0.381 kO.003 1.24 * 0.09 0.08 * 0.08 
5 

100 

3 

0.1336*0.0007 I .22 i 0.05 0.09 * 0.06 
I O  0.0698 * 0.0004 I .23 * 0.06 0.09 * 0.07 

0.00729 * 0.00005 I .24 * 0.06 0.10 * 0.08 

I 
SQ I 1.764 * 0.070 1.75 * 0.45 0. I + 0.6 

1 1.025 * 0.007 1.75 f 0.07 -0.2 z 0.3 
I 0.736 * 0.01 5 I .74 * 0.22 -0.2 * 0.4 
5 0.2564 * 0.0080 1.76 * 0.34 -0.2 i 0 . 4  

10 0.1336iO.0044 1.77 * 0.34 -0.2 * 0.4 
-0.1 * 0.6 

3 

1.80 * 0.43 100 0.0140*0.0006 
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this search estimates obtained from one method are used as input to the other. Our 
final results are given in table 8. This table contains estimates of Kc and y for all the 
spin values and lattices mentioned previously. In each case, the estimates have been 
obtained by a procedure very similar to that described above. 

We now turn to the specific heat. For this series we estimate the critical exponent 
Q using the final estimate of Kc obtained from the susceptibility. Since only even 
powers of K appear, the series is rather short. Pad6 analysis is not practical and we 
have to be content with applying ( 7 )  taking K 2  as the variable and replacing s, by 
r,-the ratio 
values of K ,  

of successive terms. Results obtained, using the central and extreme 
given in table 8 for S = 5  and the BCC lattice, are presented in table 9. 

Table 9. Sequences a ,  = 1 + g, for the specific heat C of the BCC lattice with S = 5. 

K c  0.0956 0.0957 0.0958 

ff2 0.99 1 0.996 1.000 
ff3 0.29 1 0.296 0.301 
f f4  0.155 0.161 0.168 
ff5 0.1 19 0.123 0.136 

These suggest that in this case, (Y = 0.1410.03 and this is entered in table 8. Values 
of Q for other spin values and lattices, obtained by the same technique, also appear 
in this table. (These values must be treated very cautiously. They merely summarise 
the ranges of a4 and a5 which result from the given ranges for Kc,)  

4. Conclusion 

From table 8 it is clear that, as expected, whilst Kc varies with lattice and spin there 
is no evidence that the critical exponents vary once the lattice dimension is fixed. The 
mixed spin models seem to share the same exponent values as their ‘single spin’ 
counterparts in agreement with the principle of extended spin independence. 
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